ASSESSING THE POTENTIAL OF MICROFINANCED SOLAR WATER PUMPING TO ENABLE PRODUCTIVE USE OF ENERGY IN RURAL AREAS OF BURKINA FASO:

A CASE STUDY OF KORSIMORO RESERVOIR

Presenter: Yunus Alokore

Co-authors: Dr Daniel Yamegueu & Giulia Corso

16-April-2018, Tlemcen

Res 2 Prac

PAUWES

RESEARCH 2 PRACTICE FORUM 2018

ENERGY, WATER SECURITY AND CLIMATE CHANGE IN AFRICA

> 16th - 18th APRIL, 2018 TLEMCEN, ALGERIA

Federal Ministry of Education and Research

UNITED NATIONS

UNIVERSITY

ITT Institute for Technology and Resources Management in the Tropics and Subtropics

Outline of presentation

Background information

Problem statement and objectives

Methodology

Results and discussion

Conclusion

Recommendations

Background of study

Problem statement

In spite of the huge solar resource, due to lack of initial capital, Irrigation is based on diesel water pumps which emit green house gases, contaminate water and soil, operation costs are vulnerable to volatile diesel price, and require fuel each time they are used.

Proposed solution: Microfinanced solar water pumps

Fig 3 Schematic of SWPS (www.indiamart.com)

Month	Sun Ro hours	ad (KWh/m2/d)	Eto (mm/d)	Eff. Rain (mm/d)
Jan	8.2	5.25	5.77	0.00
Feb	8.1	5.61	6.38	0.12
Mar	8	5.92	7.12	0.05
Apr	7.1	5.69	7.38	0.27
Мау	7.8	5.92	6.88	1.15
Jun	7.6	5.72	5.63	1.91
Jul	6.8	5.44	4.29	2.48
Aug	6.1	5.22	4.06	2.55
Sep	6.5	5.31	4.33	3.09
Oct	8.2	5.69	5.29	2.32
Nov	8.6	5.44	5.38	0.63
Dec	8.2	5.08	5.22	0.05
Average	7.6	5.53	5.64	1.22

Table 1. Monthly Weather Data for Ouggadougou

Source: CLIMWAT 2.0

Objectives

To determine the potential of micro-financed solar water pumping for productive use in rural areas of Burkina Faso with Korsimoro reservoir as a case study. The specific objectives are to;

- 1. Identify the main market segments for SWPS.
- 2. Determine the appropriate sizes of SWPS for the main market segments.
- 3. Determine the profitability of SWPS for the main market segments.
- 4. Calculate the main features of SWPS loan for MFIs in Burkina Faso

Methodology: Logical framework

Res 2 Prac

Result 1: Market Segments

	Market segment 1	Market segment 2	Market segment 3
Existing DWPS	• 1.5 – 3 kW	• 4- 7.5 kW	 Paying for pumping
Ownership	 Individually owned and individually used 	 Individually owned but shared use 	services provided by segment 2
Av. area Common brand	• 10,350 m² • Robin/Koshin	• 28,770 m² • Rhino/Kirloskar	• 400 m ²

Results 2: SWPS for the Market Segments

Parameters for selection of SWPS

NB: Calculations based on Onion Crop

	Market segment 1	Market segment 2	Market segment 3
Flow rate	18.3 m ³ hr	50.8 m ³ hr	0.71 m ³ hr
TDH	26 m	14.5 m	14.5 m
Mini rated power	1297 W	2008 W	101.7 W

Results 2: SWPS for the Market Segments

Table 2: Sizes of SWPS with water storage

System _	Market segment 1		Market se	Market segment 2		Market segment 3	
component	AC	DC	AC	DC	AC	DC	
Pump (W)	2200	3000	3000	4000	120	120	
Inverter (W)	2500	_	3500	_	180	_	
Tank size (m ³)	100	100	300	300	5	5	
PV Array (Wp)	2400	3120	3200	4160	160	160	

Results 3: Profitability analysis

Table 3: Ca	pital cost	of SWPS	with	water	storage

SWPS	Capital	Capital Percentage of capital cost					
	 cost (US\$)	PV system	Pump	Storage	Pipes	Installation	
1. Market seg. 1 AC SWPS	18,755.5	20%	10%	53%	6%	11%	
2. Market seg. 1 DC SWPS	21,937.7	14%	23%	46%	6%	11%	
3. Market seg. 2 AC SWPS	41,487.7	12%	10%	61%	6%	11%	
4. Market seg. 2 DC SWPS	47,848.0	10%	11%	63%	6%	11%	
5. Market seg. 3 AC SWPS	1,637.2	22%	16%	45%	6%	11%	
6. Market seg. 3 DC SWPS	1,512.8	16%	20%	47%	6%	10%	

Table 3: Savings and income from SWPS

Table 4: Savings and income from SWPS

Cost Items	Market s	egment 1	Market segment 1		Market segment 1	
	AC	DC	AC	DC	AC	DC
Annual diesel savings (US\$/year)	786.4	786.4	1,694.1	1,694.1	133.3	133.3
Transporting saving (US\$/year)	40.5	40.5	87.7	87.7	0.0	0.0
Income from sale Excess energy (US\$/year)	399.1	518.8	532.1	691.7	26.6	26.6
Total	1,226.0	1,345.7	2,314.0	2,473.6	159.9	159.9

Results 3: Profitability analysis

Table 5: NPV, PBP and IRR

S/No	SWPS	Capital cost (US\$)	NPV (US\$)	PBP (years)	IRR (%)
1.	Market seg. 1 AC SWPS	18,755.5	-4,499.1	>20	2.1%
2.	Market seg. 1 DC SWPS	21,937.7	-7,146.1	>20	0.9%
3.	Market seg. 1 AC SWPS/DWP	7,221.8	3,812.9	11.3	11.2%
4.	Market seg. 2 AC SWPS	41,487.7	-13,748.3	>20	0.8%
5.	Market seg. 2 DC SWPS	47,848.0	-18,202.2	>20	0.0%
6.	Market seg. 2 AC SWPS/DWP	12,025.5	8,425.2	10.1	13.0%
7.	Market seg. 3 AC SWPS	1,637.2	-0.6	>20	5.3%
8.	Market seg. 3 DC SWPS	1,512.8	270.9	15.6	7.4%
9.	Market seg. 3 DC SWPS/DWP	689.5	913.5	7.1	17.9%

Results 4: Main loan features for SWPS for MFIs

Table 7: Loan features for SWPS

Main Ioan terms	Market segment 2 AC SWPS/DWP	Market segment 3 DC SWPS/DWP
Loan size (US\$)	12,026.0	689.0
Interest rate (% semi-annually)	4.64	4.64
Instalment size (US\$)	1,359.5	89.0
Repayment frequency	Semi-annually	Semi-annually
Loan duration (years)	5	4.5

Conclusion

- Three main SWPS marketing segment identified.
- Storage contributes enormously to capital cost of SWPS.
- Complete replacement of DWPs with SWPS/PVC tank not profitable thus no potential for microfinance support.
- SWPS and DWP for cloudy days is profitable for all market segments thus there is a potential for microfinance support.

Recommendations and areas of cooperation with PAUWES

- Analysis based on other forms of storage: Battery and concrete
- Weather data from area for simulation and optimisation
- Excess energy throughout and possibility of swarm electrification
- SWPS for other crops and productive uses should be investigated
- Business models for SWPS/DWP, other roles of MFIs as well as farmers' willingness be determined
- GHG emission reduction and possible benefits through carbon markets be examined.

What are the potential aspects of the research that can be transformed into practice?

- Adapted findings
- **Established partnership with suppliers**
- Already looking for funding in Uganda

Some references

- 1. IWMI. Burkina Faso Country investment brief: Mapping and Assessing the Potential for Investment in Agricultural Water Management. Ouagadougou; 201.
- 2. World Bank. World Bank Burkina Faso Overview. Country Overview. http://www.worldbank.org/en/country/burkinafaso/overview. Published 2016. Viděno duben 5, 2017
- 3. UNFCC. Burkina Faso Intended Nationally Determined Contribution (INDC). Ouagadougou; 2015. http://www4.unfccc.int/submissions/INDC/Published Documents/Burkina Faso/1/INDC Burkina_ENG. version_finale.pdf.
- 4. Fraiture C De, Ndanga G, Sally H, Kabre P. Pirates or pioneers ? Unplanned irrigation around small reservoirs in Burkina Faso. Agric Water Manag. 2013;131:212–220. doi:10.1016/j.agwat.2013.07.001
- 5. Bhattacharyya, S. C., & Palit, D. (2014). Mini-grids for rural electrification of developing
- 6. countries. (S. C. Bhattacharyya & D. Pali, Eds.). Geneva: Springer.
- 7. FAO. Burkina Faso country fact sheet on food and agriculture policy trends. Rome; 2014
- 8. USAID. Climate Vulnerabilities and Development in Burkina Faso and Niger. Washington DC; 2012
- 9. MEI. solar water pumps Product Catalogue. Berlin; 2015.
- 10. MEI. MEI Sampling method.pdf. Berlin; 2017.
- IRENA. Renewable Energy Technologies Cost Analysis Series Solar Photovoltaics. Roč 1. Bonn; 2012. <u>www.irena.org/publications</u>Treephak, K., Thongpron, J., Somsak, D., Saelao, J., & Patcharaprakoto, N. (2015). An
- 12. economic evaluation comparison of solar water pumping system with engine pumping
- 13. system for rice cultivation. JJAP, 54(2015), 1–7.
- 14. Brown MA, Sovacool BK. Climate Change and Global Energy Security: Technology and Policy Options. Cambridge: MIT Press; 2011.

Thank you for your attention!

Viva Energy International Ltd Nsambya, Plot 31, Pakwach Road. P. O. Box 460, Arua, Uganda. www.vivaenergyinternational.com

