Simulation and comparison between conventional and interleaved Buck-boost converter for grid-connected PV system

MERAH Mohamed, BAGHLI Lotfi, BOUMEDIENE Abdelmadjid Laboratoire d'Automatique de Tlemcen Université de Tlemcen

PAUWES

RESEARCH 2 PRACTICE FORUM 2018

ENERGY, WATER SECURITY AND CLIMATE CHANGE IN AFRICA

> 16th - 18th APRIL, 2018 TLEMCEN, ALGERIA

Federal Ministry for Economic Cooperation

and Development

Federal Ministry of Education and Research

ITT Institute for Technology and Resources Management in the Tropics and Subtropics

Contents

- > Introduction
- › Conventional buck-boost converter (CBBC)
- > Interleaved buck boost converter (IBBC)
- > Results and discussion
- > Conclusion

Introduction

- Over the last years the economy of Algeria has negatively been affected by changes in oil prices (from 108 \$ to 35 \$).
- The price of electricity in Algeria is one of the lowest in the world at 0.04 USD/kWh which is due to the biggest share of the cost being covered by subsidies.
- The latter factors pushed the Algerian government to take austerity measures to mitigate the deficit in the budget.
- The government decided to open the doors to the development and utilization of renewable energy resources.

Introduction

Encouraged by its commitment to the international community to fight against global warming and promoting renewable energies Algeria has drawn a roadmap to reach an installed capacity of 22,000 MW in 2030

Installed power capacity from renewables in 2030 (CDER)

DC/DC stage

- > The proposed DC/DC converter is a part of the grid tie PV inverter
- The vast domain of DC-DC power converters has experienced a variety of research
- Interleaved structures are used to lessen the maximum current in power electronics and to avoid high ripple in output voltage

PV system

Conventional buck-boost converter (CBBC) Vi V (a) Switch position at D = 1. (b) Switch position at D = 0. Circuits topologies associated with the Buck-Boost Ideal switch representation of the Buck-Boost converter **DC-to-DC converter.** $V_{DC} = \frac{D}{1 - D} V_{pv} \text{ where D is the duty cycle of the switch} \begin{cases} i_C = C \frac{dV_{DC}}{dt} = -i_o \\ V_L = L \frac{di_L}{dt} = V_{pv} \end{cases} \begin{cases} i_C = C \frac{dV_{DC}}{dt} = -i_L - i_o \\ V_L = L \frac{di_L}{dt} = V_{pv} \end{cases}$ $\begin{cases} \frac{dV_c}{dt} = \frac{1}{C} \left(-\frac{V_c}{R} - (1-D)i_L \right) \\ \frac{di_L}{dt} = \frac{1}{L} \left(V_{pv}D + (1-D)V_{DC} \right) \end{cases}$

Interleaved buck boost converter (IBBC)

Parameters design: $R = \frac{V_{DC}^2}{P_{pv}}$ $L_1 = L_2 = L = \frac{V_{pv}D}{\Delta I_L F_s}$ $C_2 = \frac{V_{DC}D}{\Delta V_{DC}F_s}$ $C_1 = \frac{P_{pv}}{2 * \Delta_{pv}F_s V_{pv}min}$

Scheme of the interleaved Buck-Boost DC-DC converter

Results and discussion

PV system and DC-DC converter specifications

DC-DC input voltage V_{pv}	29.32 V	Capacitor C	>1.1 mF
DC-DC output voltage V_{DC}	33 V	Inductance L1=L2	5.88 mH
DC-DC input current I_i	7.84 A	Capacitor C1	435 μF
DC-DC output current i_o	8.32 A	Resistance	3.73 Ω
Switching frequency F_s	16 KH	Duty cycle D	0.52

Results and discussion

The proposed converters CBBC and IBBC are simulated using Simulink/Matlab environment

IL1 and IL2 current waveform with interleaving control strategy

Results and discussion

M. Merah -10- Res 🤅

Conclusions

- Both input and output voltage and current ripples were reduced, and efficiency was improved.
- > The size of the inductor can be reduced when using IBBC.
- The IBBC presents less switching power losses and has a higher efficiency in respect to the CBBC.
- Having an interleaved structure can cost additional inductors and power switching devices.

- As researchers or practitioners what are the possible interactions/collaboration with practitioners resp. researchers to improve/upscale your activities
- Same Lab as PAUWES PhD students
- **Build experiments used by:**
 - **PAUWES** PhD students
 - PAUWES Master students

What are the potential aspects of the research that can be transformed into practice?

- Look for partners:
 - Build prototypes
 - **Startup**
 - Build and sell for Africa
 - **Export for EC**

Thank you for your attention

