

Research-2-Practice Forum on Renewable Energy, Water and Climate Security in Africa, 16 – 18 April 2018, Tlemcen, Algeria

Prospect of wind energy as a resource for water pumping in Ngaoundere

Presented by:

Ruben M. MOUANGUE

Associate Professor, Head of Department of Energy Engineering University of Ngaoundere, Cameroon

Outline

- Problem statement
- Aim of the study
- Methodology
- Results
- Conclusion

Aim of the study

- Assess the wind potential of our site;
- Compute the amount of water that could be provided for each pump model;
- Select the pump model that can cover the water needs of Beka Hossere's people.

Modelling of the observed wind speed distribution

Methodology

Weibull's Probability Density Function

Aim of the

study

Problem

statement

$$f(v) = \frac{k}{C} \left(\frac{v}{C}\right)^{k-1} exp\left[-\left(\frac{v}{C}\right)^k\right]$$
(1)

Results &

discussion

Conclusion

Modified Maximum Likelihood Method (Seguro and Lambert, 2000)

$$k = \left(\frac{\sum_{i=1}^{n} v_{i}^{k} Ln(v_{i}) f(v_{i})}{\sum_{i=1}^{n} v_{i}^{k} f(v_{i})} - \frac{\sum_{i=1}^{n} Ln(v_{i}) f(v_{i})}{F(v \ge 0)}\right)^{-1}$$
(2)
$$C = \left(\frac{1}{F(v \ge 0)} \sum_{i=1}^{n} v_{i}^{k} f(v_{i})\right)^{\frac{1}{k}}$$
(3)

Mean wind speed and Energy density (Boudia et al., 2015)

$$\bar{V} = C \Gamma \left(1 + \frac{1}{k} \right)$$
(4)
$$E_D = \frac{1}{2} \rho C^3 \Gamma \left(1 + \frac{3}{k} \right)$$
(5)

Extrapolation of the Weibull parameters:

Justus and Mikhail Law (1978, 2011):

$$k_{h} = k_{a} \left[1 - 0.0881 Ln \left(\frac{Z_{h}}{10} \right) \right]^{-1}$$
(6)

$$C_h = C_a \left(\frac{Z_h}{Z_a}\right)^n \tag{7}$$

Modelling of the power curve

$$P_T(v) = \frac{P_{i+1} - P_i}{v_{i+1} - v_i} (v - v_i) + P_i$$

$$P_{EL} = \int_{V_d}^{V_n} P_T(v) f(v) dv + P_n \int_{V_n}^{V_a} f(v) dv \qquad (10)$$

 $E_{EL} = P_{EL} * N_H$

(11)

(9)

$$n = 0.37 - 0.0881 LnC_a \tag{8}$$

Fig. 1 Actual power curve is approximated by a piece-wise linear function with few nodes. (*Carta et al., 2008*) Problem
statementAim of the
studyMethodologyResults &
discussionConclusionModelling of the water output dischargesPiston pump : $Q_P = T \int_{V_I}^{V_O} Q_{VP}(V) f(V) dV$ (12)

$$Q_P = 2C_{Pd}\eta(T,P)\frac{\rho_a}{\rho_W}\frac{\pi D_T^2}{4gH}T\int_{V_I}^{V_O}V^3\left[1-K_O\left(\frac{V_I}{V}\right)^2\right]K_O\left(\frac{V_I}{V}\right)^2\left(\frac{k}{C}\right)\left(\frac{V}{C}\right)^{k-1}exp\left[-\left(\frac{V}{C}\right)^k\right]dV$$
(13)

Roto-dynamic pump :

$$Q_R = T \int_{V_I}^{V_O} Q_{VR}(V) f(V) dV \quad (14)$$

$$Q_{R} = \frac{1}{8} k C_{Pd} \eta_{Pd} D_{T} \frac{\rho_{a}}{\rho_{w}} \frac{V_{d}^{3}}{gH} \frac{G\lambda_{d}}{N_{Pd}} T \int_{V_{I}}^{V_{O}} \left(\frac{V}{C}\right)^{k} exp\left[-\left(\frac{V}{C}\right)^{k}\right] dV$$
(15)

Electric pump:

$$Q_{E} = \frac{\eta T}{\rho_{w}gH} \int_{V_{I}}^{V_{O}} P(V)f(V)dV \quad (16)$$

$$Q_{E} = \frac{\eta T}{\rho_{w}gH} \left\{ \int_{V_{I}}^{V_{R}} \left[\frac{P_{i+1} - P_{i}}{V_{i+1} - V_{i}}(V - V_{i}) + P_{i} \right] \left(\frac{k}{C} \right) \left(\frac{V}{C} \right)^{k-1} exp \left[-\left(\frac{V}{C} \right)^{k} \right] dV + P_{R} \int_{V_{R}}^{V_{O}} \left(\frac{k}{C} \right) \left(\frac{V}{C} \right)^{k-1} exp \left[-\left(\frac{V}{C} \right)^{k} \right] dV \right\} (17)$$

Problem statement	Aim of the study	Methodology	Results & discussion	Conclusion
----------------------	------------------	-------------	----------------------	------------

 Table 1: Specifications of water pump models

Pump specifications	Piston	Roto-dynamic	Electric
Wind turbine			V29
Coefficient K	0.25	-	
Cut-in wind speed (m/s)	2.5	2.5	3
Cut-out wind speed (m/s)	10	10	20
Design power coefficient	0.3	0.38	
Design tip speed ratio	-	2	
Design wind velocity	-	6	
Efficiency (pump + transmission)	0.95	0.558	
Gear ratio	-	19.8	
Rated power			255 kW
Rated wind speed			14 m/s
Pump speed at design point (rps)	-	40	-

Collection and processing of data

Table 2: Wind speed statistics in frequency

Wind speed (m/s)	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10
Frequency (%)	51.0	16.3	14.8	12.0	4.8	0.9	0.1	0.1	0.0	0.0

10

Modelling of the observed wind speed distribution

Table 3: Wind parameters at 10 m agl

	k	С	√ 10 m	E _D 10m
	-	(m/s)	(m/s)	(W/m²)
Our results	1.236274	1.690723	1.578156	7.593257
From WasP	1.230	1.700	1.570	8.00

Fig. 3 Wind speed histogram fitted by the Weibull PDF

Fig. 6 The wind energy distribution per sector

Fig. 7 Vertical wind profile at different heights

Fig. 8 Monthly water discharge for different type of pump used

Table 4: Water volume in (m³) after computations

	may-11	juin-11	july-11	aug-11	sept-11	oct-11	nov-11	dec-11	janv-12	feb-12	mars-12	apr-12	Annual
Piston	700	492	509	651	473	422	507	553	577	638	674	600	6839
Roto-d.	2069	1473	1528	1932	1421	1275	1510	1644	1711	1879	1982	1784	20324
Electric	85016	44542	43550	70615	40829	31334	55467	61899	70901	92820	100042	63670	753905

From Research - 2 - Practice

Conclusion

The wind potential of our site is favourable for an electricity generation from wind power;

Between the 03 models of wind pumps considered, the electric pump is the one that gives the best performance;

The volume of water is expected to yield 754 000 M³ per year. It is five times higher than the needs of Beka-Hossere's people;

Expectations about collaborations

Deep studies of the project

Realization of the project in the future

INFRASTRUCTURES AND EQUIPMENTS IN OUR ENERGY ENGINEERING DEPARTMENT

Renewable Energies

- Weather station Vantage Pro 2 for a practical works on renewable energies.
- 1.5 meter wind power plant
- 5 kW solar plant

INFRASTRUCTURES AND EQUIPMENTS IN OUR ENERGY ENGINEERING DEPARTMENT

ACKNOWLEDGMENTS

- United Nations University (UNU-EHS);
- Pan African University Institute of Water and Energy Sciences;
- University of Abou-Bekr Belkaid, Tlemcen;
- Reaseach2Practice Forum Organizing Committee.

Thank you for your kind attention !

